Alberto Lemme

EDIFICI IN MURATURA DALL'EMERGENZA ALLA RICOSTRUZIONE

Tecniche costruttive negli interventi di restauro e miglioramento sismico

EDIFICI IN MURATURA, DALL'EMERGENZA ALLA RICOSTRUZIONE

Autore: Alberto Lemme

© 2025 Ouine S.r.l.* - Tutti i diritti riservati

ISBN 9788857917276

I diritti di traduzione, di memorizzazione elettronica, di riproduzione e adattamento totale o parziale con qualsiasi mezzo (compresi i microfilm e le copie fotostatiche), sono riservati per tutti i Paesi. Le fotocopie per uso personale del lettore possono essere effettuate nei limiti del 15% di ciascun volume dietro pagamento alla SIAE del compenso previsto dall'art. 68, commi 4 e 5, della legge 22 aprile 1941 n. 633. Le fotocopie effettuate per finalità di carattere professionale, economico o commerciale o comunque per uso diverso da quello personale possono essere effettuate a seguito di specifica autorizzazione rilasciata da CLEARedi, Centro Licenze e Autorizzazioni per le Riproduzioni Editoriali, Corso di Porta Romana 108, 20122 Milano, e-mail autorizzazioni@clearedi.org e sito web www.clearedi.org.

L'Editore ha compiuto ogni sforzo per ottenere e citare le fonti esatte delle illustrazioni. Qualora in qualche caso non fosse riuscito a reperire gli aventi diritto è a disposizione per rimediare a eventuali involontarie omissioni o errori nei riferimenti citati.

Quine S.r.I. Via G. Spadolini, 7 20141 Milano Tel. 02 881841

www.darioflaccovio.it

Finito di stampare nel mese di maggio 2025 presso "LegoDigit" Srl., Lavis (TN)

* Quine S.r.l. fa parte di LSWR GROUP

Indice

	REFAZIONE REMESSA	11 13
1.	INDICAZIONI PER LA SCELTA DEGLI INTERVENTI	
	DI RIPARAZIONE DEL DANNO, MIGLIORAMENTO SISMICO E RESTAURO DEGLI EDIFICI ESISTENTI	15
	Introduzione all'argomento	15
	Criteri generali per la scelta degli interventi strutturali negli edifici in muratura	16
	Danno sismico e degrado	17
	I LIVELLI DEL DANNO SISMICO	17
	CORRELAZIONE TRA IL DANNO E LA VULNERABILITÀ	19
	ANALISI DEL DANNO	21
	Analisi dei modi di danno	23
	Analisi dei danno qualitativo: collegamento del danno ai meccanismi di collasso	28
	Determinazione del livello di danno	29
	Disgregazione della parete muraria	31
	Meccanismi fuori del piano	32
	Meccanismi di collasso nel piano	35
	Abaco dei meccanismi e dei modi di danno alle strutture verticali	36
	Meccanismi di collasso nei palazzi	40
	Analisi della vulnerabilità e strategie di intervento per il miglioramento sismico	42
	Percorso di valutazione della vulnerabilità sismica	42
	Fase della conoscenza	43
	ANALISI STORICA, RILIEVO DELLA GEOMETRIA DEL FABBRICATO E CARATTERIZZAZIONE DEGLI ELEMENTI COSTRUTTIVI	43
	Strutture verticali e qualità muraria	44
	METODOLOGIE PER L'ANALISI DELLA TIPOLOGIA E DELLA QUALITÀ MURARIA	45
	CLASSIFICAZIONE DELLE MURATURE SECONDO LA METODOLOGIA UTILIZZATA PER LA VALUTAZIONE DEL DANNO DEGLI EDIFICI	
	DANNEGGIATI DAL TERREMOTO (SCHEDA AEDES A CURA DI DPC-GNDT)	45

METODOLOGIA MESSA A PUNTO DAL GRUPPO NAZIONALE	
PER LA DIFESA DAI TERREMOTI	47
Scheda parametrica Comune L'Aquila – USRA	48
METODOLOGIA SVILUPPATA IN AMBITO RELUIS	53
Le linee guida per la classificazione del rischio sismico delle costruzioni (D.M. n. 65/2017)	54
REPERTORIO MURATURE	55
Terremoto 1984 – Abruzzo e Molise	55
Terremoto 1997-1998 – Umbria e Marche	57
Terremoto 2002 – Molise-Puglia	58
Italia centro meridionale	61
Sisma Abruzzo 2009	72
Sisma 2016 – Italia centrale	72
Analisi della qualità muraria e normativa sulle costruzioni	
in zona sismica	74
LA DETERMINAZIONE DEL LIVELLO DI CONOSCENZA COME	
INDICATO DALLA NORMATIVA	74
I LIVELLI DI CONOSCENZA PER GLI EDIFICI TUTELATI	76
IL PROGRAMMA DEI SAGGI E DELLE INDAGINI SULLA MURATURA	77
VERIFICHE DI VULNERABILITÀ DEGLI ELEMENTI SECONDARI E DEGLI IMPIANTI	79
Il riconoscimento tipologico e degli elementi costitutivi per la determinazione della classe e delle eventuali sottoclassi e delle proprietà meccaniche con riferimento alla normativa	80
Analisi dei pannelli murari e riconoscimento dei possibili	
meccanismi di collasso	85
Le murature nel centro storico di L'Aquila	89
Strutture orizzontali	95
STRUTTURE ORIZZONTALI PIANE	96
Struttura portante in legno	96
Solai in ferro	99
Solai in cemento armato	101
Confronto tra i solai	101
STRUTTURE ORIZZONTALI A VOLTA	102
CONSIDERAZIONI SUL COMPORTAMENTO DELLE VOLTE	103
Strutture di copertura	109
ELEMENTI COSTITUTIVI	110
TIPOLOGIE	110
MATERIALI	112

Indice	

	COMPORTAMENTO DELLE COPERTURE	114
	Individuazione delle carenze costruttive	116
	Metodologie per la valutazione della vulnerabilità sismica	122
	MODELLI SEMPLIFICATI	122
	Matrici di probabilità del danno DPM (1980) e scheda GNDT 2V (1983)	123
	LINEE GUIDA PER LA CLASSIFICAZIONE DEL RISCHIO SISMICO DELLE COSTRUZIONI (D.M. 28/01/2017 N. 58)	127
	VALUTAZIONE SEMPLIFICATA DELLA VULNERABILITÀ CON LE LINEE GUIDA DEL 2017	128
	ANALISI DELLA VULNERABILITÀ STRUTTURALE DEGLI AGGREGATI URBANI	132
	ANALISI DELLA VULNERABILITÀ DEI CENTRI STORICI	139
	Determinazione della classe di rischio sismico delle costruzioni con il metodo convenzionale	141
	ANALISI PER MECCANISMI DI COLLASSO	144
	Individuazione degli interventi per la riparazione e il miglioramento sismico	149
	LE CLASSI DI COMPORTAMENTO DEGLI EDIFICI	149
	SCELTA DEGLI INTERVENTI	153
	SEQUENZE LOGICHE DI INTERVENTO	156
	CONFRONTO TRA LA VULNERABILITÀ DEL MODELLO PARAMETRICO E LE LINEE GUIDA DEL 2017	162
	ANALISI DEI DATI DELLA SCHEDA PARAMETRICA	167
2.	TECNICHE DI INTERVENTO DI RESTAURO E MIGLIORAMENTO SISMICO DEGLI EDIFICI IN MURATURA	171
	Strategie di intervento nelle fase dell'emergenza, della ricostruzione e per la prevenzione	171
	Interventi provvisionali nella fase dell'emergenza	172
	TIPOLOGIA DEGLI INTERVENTI DI MESSA IN SICUREZZA	173
	Puntellature di sostegno	173
	Puntellature di ritegno	178
	INTERVENTI PROVVISIONALI PER CONTRASTARE I MECCANISMI NEL PIANO	192
	STRATEGIA E SCELTA DEGLI INTERVENTI PROVVISIONALI E DEFINITIVI	197
	Le tecniche costruttive tradizionali e moderne negli interventi di restauro e miglioramento sismico	198
	LA STRATEGIA DI INTERVENTO	201

	PRESIDI ANTISISMICI TRADIZIONALI	202
	GLI INTERVENTI DI PRIMA GENERAZIONE NEGLI EDIFICI	
	IN MURATURA COLPITI DAL SISMA	212
	GLI INTERVENTI DI SECONDA GENERAZIONE NEGLI EDIFICI IN MURATURA COLPITI DAL SISMA	219
	INTERVENTI SULLE STRUTTURE VERTICALI E SULLE MURATURE	226
	INTERVENTI SULLE STRUTTURE VERTICALI E SULLE MURATURA INTERVENTI SUI PANNELLI MURARI E IN GENERALE SULLA MURATURA	227
	Attacchi a terra	237
	CONSIDERAZIONI SUGLI INTERVENTI MULTIPLI PREVISTI	231
	PER LE MURATURE	242
	INTERVENTI NELLE STRUTTURE ORIZZONTALI E COLLEGAMENTI	
	DI PIANO	244
	Strutture orizzontali piane in legno	246
	Solai in ferro	251
	Solai in cemento armato	253
	Solai costruiti in opera	254
	Strutture orizzontali a volta	255
	INTERVENTI ALLE STRUTTURE DI COPERTURA	259
	Rinforzo sommitale	261
	Rinforzo sommitale in muratura armata con acciaio	262
	Rinforzo sommitale in muratura armata con materiale composito	266
	Controventi di falda	268
	La strategia di intervento per la prevenzione sismica	270
	INTERVENTI DI MIGLIORAMENTO SISMICO FINALIZZATI	
	ALLA RIDUZIONE DEL COEFFICIENTE DI AMPLIFICAZIONE LOCALE	275
	Risultati della tomografia sismica ante e post opera	279
	Esempio di prevenzione sismica su un edificio esistente in muratura	281
2	DESTAUDO STODICO ADTISTICO E MICHODAMENTO	
3.	RESTAURO STORICO-ARTISTICO E MIGLIORAMENTO SISMICOA NALISI METODOLOGICA E PROGETTI	285
	Introduzione	285
	Fasi del percorso	285
	ANALISI DEGLI APPARATI PER TIPOLOGIA. MATERIALE E STATO	
	DI CONSERVAZIONE	285
	ANALISI DEGLI APPARATI DECORATIVI E STORICO ARTISTICI	
	PER MATERIALE	286
	Analisi dello stato di conservazione	288
	L'ANALISI DEL DANNO E DEI MECCANISMI PROPRI DEGLI	

INTERVENTI A LIVELLO DI TESSUTO EDILIZIO

201

	APPARATI STORICO-ARTISTICI E DELLA STRUTTURA	289
	INTERAZIONE MECCANICA TRA GLI APPARATI DECORATIVI E	
	ARTISTICI E IL SUPPORTO STRUTTURALE	291
	LA VULNERABILITÀ SISMICA DEGLI APPARATI DECORATIVI	294
	Verifica alle azioni ordinarie e sismiche di alcuni apparati	007
	decorativi artistici	297
	La maggiorazione per edifici di interesse paesaggistico, pregio e vincolo diretto	300
	Ricostruzione critica di architetture crollate: il progetto di restauro	
	e miglioramento sismico di Palazzo Ardinghelli, sede del MAXXI a L'Aquila	301
	ANALISI DEL DANNO, DEI MECCANISMI PROPRI DEGLI APPARATI	301
	STORICO-ARTISTICI E DELLA STRUTTURA DI SUPPORTO	301
	DESCRIZIONE DELLA LOGGIA	303
	DEGRADO DEI MATERIALI	304
	DESCRIZIONE DELLA METODOLOGIA DI INTERVENTO	
	PER LA RICOSTRUZIONE DELLA LOGGIA	305
	REINTEGRAZIONE DELLE LACUNE DI PARTI LAPIDEE CROLLATE	306
	RICOLLOCAZIONE DEGLI ELEMENTI LAPIDEI CROLLATI: PILASTRI,	
	ARCHI E VOLTE A CROCIERA	307
	RICOSTRUZIONE DEGLI ARCHI DELLA LOGGIA	309
	RICOSTRUZIONE DELLE VOLTE A CROCIERA	310
	IL CORNICIONE	310
	Descrizione dell'elemento decorativo	310
	Descrizione dell'intervento di restauro	311
	MODELLAZIONE NUMERICA E VERIFICA ALLO STATO LIMITE ARTISTICO	313
	Il loggiato	313
	Il cornicione	316
	CONSIDERAZIONI	318
4.	EVENTI SISMICI CHE HANNO COLPITO L'ITALIA	
	NEGLI ULTIMI ANNI	319
	1980 - Irpinia - Basilicata	319
	CARATTERISTICHE DELL'EVENTO SISMICO	319
	DANNI PRODOTTI DAL SISMA	320
	Modalità intervento	320
	NORMATIVA	321
	1984 - Italia centro meridionale	322
	CARATTERISTICHE DELL'EVENTO	322

DANNI PRODUTTI DAL SISMA	323
MODALITÀ INTERVENTO	323
Tecniche di intervento	323
NORMATIVA E CONDIZIONI TECNICHE	324
LA RICOSTRUZIONE NEL CENTRO STORICO DI ISERNIA	324
ANALISI DEGLI INTERVENTI DI RIATTAZIONE	328
1997-1998 - Umbria e Marche	329
CARATTERISTICHE DELL'EVENTO	329
DANNI PRODOTTI DAL SISMA	330
ATTUAZIONE DELLA RICOSTRUZIONE	330
Edilizia privata – Ricostruzione leggera	330
NORMATIVA	331
Indicazioni per l'esecuzione degli interventi	331
Condizioni di danno	332
2002 - Molise e Puglia: il percorso della ricostruzione	334
LA CRISI SISMICA DEL 2002	334
LE FASI DEL PROCESSO DI RICOSTRUZIONE	334
LA NORMATIVA PER LA RICOSTRUZIONE	336
Le direttive dei Comitato tecnico scientifico CTS	336
Progetti edilizi unitari (PEU) e singoli (PES)	338
IL RILIEVO DEL DANNO E LA STIMA DEI COSTI	
PER GLI EDIFICI RESIDENZIALI	339
ANALISI DEI RISULTATI DEI PPS	342
STIMA DEL CONTRIBUTO PER I PPS-PS	343
PRIORITÀ DI INTERVENTO E LIVELLO DI DANNO	343
Priorità – Intensità macrosismica (I _{MCS})	345
LA PROGETTAZIONE ESECUTIVA	346
CONSIDERAZIONI SUL SISMA DEL 2002	347
2009 – Abruzzo – L'Aquila	348
CARATTERISTICHE DELL'EVENTO SISMICO	348
ATTUAZIONE	350
NORMATIVA	350
LA RICOSTRUZIONE NEL COMUNE DELL'AQUILA	351
Il protocollo di progettazione	352
Analisi per aggregati urbani	352
La scheda-progetto per la presentazione delle proposte	
di intervento	354
Il modello per la etima dei costi	355

٠		

Descrizione del patrimonio edilizio	357
Il modello parametrico per la ricostruzione del centro storico dell'Aquila	360
Determinazione del contributo concedibile	361
La scheda parametrica	365
Maggiorazione per edifici di interesse paesaggistico, pregio e vincolo diretto	366
Analisi dei risultati dell'applicazione del modello parametrico	368
2012 - Emilia Romagna	370
CARATTERISTICHE DELL'EVENTO SISMICO	370
ATTUAZIONE E RIFERIMENTI NORMATIVI	371
2016 - Italia centrale	376
CARATTERISTICHE DELL'EVENTO SISMICO	376
GESTIONE DELL'EMERGENZA E DELLA RICOSTRUZIONE	378
LA RICOSTRUZIONE PRIVATA	378
Definizione dei livelli di danno e vulnerabilità	380
Gradi di vulnerabilità	384
2017 – Ischia – Casamicciola	385
CARATTERISTICHE DELL'EVENTO SISMICO	385
DANNI PRODOTTI DALL'EVENTO	385
MODALITÀ DI INTERVENTO E NORMATIVA	386

5. INTERVENTI DI RESTAURO E MIGLIORAMENTO SISMICO DI EDIFICI DANNEGGIATI DAL TERREMOTO (sarà scaricabile seguendo le indicazioni pubblicate a pag. 10)

BIBLIOGRAFIA 389

PREFAZIONE

L'esperienza avuta come coordinatore delle attività svolte dal Gruppo nazionale per la difesa dai terremoti e dal CNR-ITC della sede di L'Aquila durante gli eventi sismici che hanno colpito il territorio italiano negli ultimi quarant'anni hanno rafforzato la mia convinzione che l'esperienza sul campo sia fondamentale e l'osservazione dei danni a seguito di un evento sismico sia parte integrante delle fasi successive della ricostruzione. Il percorso dall'emergenza alla ricostruzione, che in questo lavoro viene messo in evidenza, sintetizza questi aspetti basandosi su esperienze concrete. Le esperienze con il GNDT nel terremoto del 1984 in Italia centrale, in Umbria e Marche nel 1997-1998 e in Molise nel 2002 hanno rappresentato tappe fondamentali come evidenziato nel presente lavoro e l'attività svolta dopo gli eventi sismici del 2009 in Abruzzo hanno consolidato questo percorso con il modello parametrico per la stima dei costi e il divieto di realizzare per le murature storiche interventi di prima generazione che fanno uso di cemento armato. Nel lavoro si analizzano gli aspetti metodologici per definire la strategia di intervento sia nella fase dell'emergenza che in quella della ricostruzione e quindi anche della prevenzione, focalizzando l'attenzione sugli aspetti decisionali e cercando di fornire ai tecnici una visione critica delle scelte progettuali.

In tale prospettiva nella pubblicazione viene dato molto spazio alle analisi speditive, a vario livello, dall'analisi per meccanismi di collasso alla individuazione delle carenze costruttive degli edifici fino a indicare soluzioni per la valutazione della vulnerabilità utilizzabili anche per futuri eventi tenuto conto che in Italia dopo ogni evento sismico le normative sono state cambiate e nel 2024 sono vigenti contemporaneamente procedure diverse.

Altro aspetto trattato è quello dei beni storico-artistici che non possono essere visti in modo separato dal consolidamento delle strutture. Il restauro degli apparati storico-artistici è parte integrante del miglioramento sismico sia se essi collaborano con la struttura sia se hanno solo funzione decorativa. Per tale problematica viene proposta una metodologia di lavoro che prevede il contributo di tutti i tecnici coinvolti a vario titolo (restauratore, architetto, ingegnere) invitandoli a non affrontare in modo separato tale problematica come spesso avviene. A tal proposito il richiamo è alla direttiva dei BB.CC. del 2011 che con lo stato limite artistico ha avviato questa impostazione. Gli esempi forniscono utili spunti per i tecnici spingendoli verso una progettazione più consapevole basata su analisi concettuali dove il calcolo diventa un supporto ma non l'unico strumento di decisione in un contesto in cui l'intelligenza artificiale potrebbe ridurre ulteriormente l'aspetto decisionale.

PREMESSA

Il tecnico nella redazione del progetto di restauro e miglioramento sismico degli edifici in muratura spesso è solo di fronte a corpi di fabbrica sui quali intervenire tenendo conto delle proprie conoscenze e della esperienza sul campo.

Nel presente lavoro si indica un percorso collegato all'analisi di casi reali con l'obiettivo di fornire indicazioni metodologiche e progettuali per individuare la strategia di intervento, redigere il progetto e dirigere i lavori. Il punto di partenza sono sempre l'analisi dello stato di fatto, il confronto con casi simili, l'utilizzo di strumenti originali di supporto, con l'obiettivo di evitare condizionamenti che spesso derivano da una applicazione rigida della normativa con riferimento soltanto ad aspetti formali e numerici. Non sempre i tecnici hanno avuto la possibilità di analizzare e studiare gli edifici danneggiati dagli eventi sismici e il contributo che si mette a disposizione è quello di una analisi che parte dallo studio del comportamento degli edifici a seguito di un evento sismico e dalla scelta degli interventi con il supporto di strumenti schedografici, di analisi di costo e di calcolo. Si analizza il percorso dall'emergenza alla ricostruzione includendo anche gli interventi provvisionali da realizzare subito dopo l'evento sismico fino a quelli per la prevenzione per il miglioramento sismico del patrimonio edilizio.

Gli eventi sismici che hanno colpito il territorio italiano hanno posto in primo piano il problema della vulnerabilità degli edifici esistenti in muratura e della scarsa efficacia di interventi di consolidamento che prevedono l'inserimento di elementi estranei ai manufatti e alle modalità costruttive originarie che possono introdurre vulnerabilità aggiuntive. L'analisi è stata svolta tenendo conto della lezione dei terremoti e gli interventi sono stati distinti in tradizionali, caratteristici delle tecniche costruttive locali, e moderni a loro volta differenziati tra quelli discutibili di prima generazione, che hanno fatto uso del cemento armato, e quelli di seconda generazione che prevedono l'impiego di materiali compatibili con le murature e le culture locali. E stato affrontato il problema della interazione tra le strutture e gli apparati storico-artistici perché anche per questi è possibile definire una vulnerabilità sismica in funzione delle caratteristiche dei beni e delle strutture con le quali interagiscono. Si illustrano alcuni interventi di miglioramento sismico realizzati su edifici danneggiati da eventi sismici dalla fase dell'emergenza a quella della ricostruzione, viene effettuata una analisi degli eventi sismici più significativi che hanno colpito il territorio italiano negli ultimi anni e un confronto tra i modelli di valutazione del danno e della vulnerabilità.

1. INDICAZIONI PER LA SCELTA DEGLI INTERVENTI DI RIPARAZIONE DEL DANNO, MIGLIORAMENTO SISMICO E RESTAURO DEGLI EDIFICI ESISTENTI

Alberto Lemme e Giandomenico Cifani

Introduzione all'argomento

Il patrimonio edilizio degli edifici esistenti in muratura e in particolare quello dei centri storici italiani è composto da tipologie costruttive differenti che vanno dagli edifici monumentali agli edifici residenziali organizzati in aggregati edilizi o edifici isolati realizzati con materiali diversi in base all'epoca di costruzione e all'area geografica, come ad esempio gli edifici in mattoni o in pietra. La maggior parte di essi è ubicato in zone classificate a media ed elevata sismicità, non è in grado di resistere a un evento sismico di forte intensità e non è possibile, per il rispetto delle tipologie costruttive locali e di tutela del patrimonio culturale, conseguire l'adeguamento alle norme sismiche che si sono estese ed evolute nel corso degli anni considerando a rischio sismico zone che fino a qualche anno erano escluse. I recenti eventi sismici hanno posto in primo piano il problema della vulnerabilità degli edifici esistenti in muratura e la scarsa efficacia di alcuni interventi di consolidamento che prevedono l'inserimento di elementi estranei ai manufatti originari e alle modalità costruttive storiche locali. Tali interventi non hanno ottenuto, in termini di resistenza sismica, il risultato atteso al collaudo sismico e, in molti casi, sono stati causa di un aggravamento del danno stesso e la problematica va affrontata nella prospettiva di calibrare gli interventi per le singole tipologie costruttive, prevedere interventi efficaci e di costo limitato, che consentano di raggiungere un livello di miglioramento sismico accettabile (minimo 60% dell'adeguamento sismico) da coniugare anche all'esigenza dell'efficienza energetica. Il territorio italiano è stato e sarà sempre colpito da forti eventi sismici e la ricostruzione delle zone danneggiate è stata affrontata in modo differente dopo ogni evento con procedure e costi unitari diversi e si pone in modo rilevante il problema della prevenzione intervenendo non soltanto a seguito dei terremoti. L'esperienza fatta a seguito degli eventi sismici che hanno colpito il territorio nazionale tra la fine del XX secolo e l'inizio del XXI consente di fornire un contributo per l'esecuzione degli interventi finalizzati al recupero del patrimonio edilizio degli edifici in muratura e in particolare dei centri storici.

Gli edifici in muratura complessivamente hanno una superficie di circa 550 milioni di metri quadri distribuiti per epoca di costruzione e zona sismica, di cui circa il 48% in zone a media ed elevata sismicità e circa il 28% realizzato prima del 1945 con pre-

valenza di edifici in pietra mentre gli edifici più recenti sono realizzati in muratura di mattoni pieni o tipologie costruttive simili (Tab. 1.1).

Zona sismica	< 1945	1945-1980	1980-2000	> 2000	Totale
1	2,0%	3,30%	0,8%	0,1%	6,2%
2	11,4%	24,2%	4,5%	1,0%	41,2%
3	14,6%	30,9%	5,8%	1,3%	52,6%
Totale	28,0%	58,5%	11,1%	2,4%	100,0%

Tabella 1.1. Costruzioni in muratura per zona sismica e epoca di costruzione

Gli studi e le analisi sul rischio sismico effettuati per gli edifici in muratura, in particolare nelle zone sismiche dell'Italia Centro-meridionale e dopo gli eventi sismici che hanno colpito il territorio italiano negli ultimi quarant'anni, hanno evidenziato la prevalenza del mattone negli edifici più recenti e nelle aree costiere e pianeggianti e la prevalenza della pietra e delle case in terra per gli edifici più antichi nelle aree montane.

Inoltre per gli edifici in muratura la vulnerabilità, in particolare per le case in pietra, risulta essere molto influenzata dalla tipologia delle strutture orizzontali e di copertura e dagli interventi eseguiti negli ultimi decenni. Nel seguito viene illustrato un percorso metodologico per individuare la strategia di intervento per eseguire interventi antisismici partendo dall'analisi delle carenze costruttive, dell'eventuale danno correlato a esse e alla scelta delle soluzioni tecnologiche da impiegare per mitigare la vulnerabilità in un equilibrato rapporto costi-benefici.

Criteri generali per la scelta degli interventi strutturali negli edifici in muratura

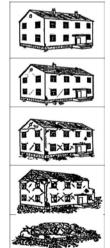
Gli interventi strutturali sugli edifici in muratura sono previsti per contrastare, oltre alle azioni sismiche, il degrado che si manifesta nel tempo per cause naturali e antropiche e i dissesti che possono essere provocati dai carichi verticali che agiscono sulla struttura, dalla presenza di eventuali cedimenti in fondazione, dalle variazioni termiche e dai carichi orizzontali dovuti a elementi spingenti come le strutture ad arco e le coperture e all'azione del vento.

Nel seguito saranno esaminate con maggiore attenzione le cause dei dissesti dovuti ai terremoti, che hanno provocato danni ingenti al patrimonio edilizio, che possono sollecitare le strutture oltre la capacità di resistenza e deformazione, che possono amplificare le altre cause di dissesto e sono favorite dalle condizioni di degrado.

Le cause dei dissesti dovute ai terremoti che hanno colpito il terremoto italiano sono state oggetto di studio e ricerca basandosi, principalmente, sull'analisi dei danni provocati dallo scuotimento sismico e all'individuazione delle tipologie costruttive che rispondono meglio alle azioni sismiche.

Danno sismico e degrado

L'analisi ha come punto di partenza la valutazione dello stato di conservazione e nel caso degli edifici danneggiati da un evento sismico la riparazione del danno comporta anche un miglioramento sismico, come ad esempio la semplice sarcitura delle lesioni o la ricostruzione di un muro parzialmente o completamente crollato, mentre gli interventi strutturali sono definiti dopo una analisi approfondita della vulnerabilità che, per gli edifici in muratura, non può prescindere dall'individuazione delle carenze costruttive, dei principali meccanismi di collasso attivati e attivabili e dei presidi che ne impediscono l'attivazione in caso di sisma.


Il livello di danneggiamento dopo un evento sismico ha fornito sempre la motivazione per intraprendere nelle aree colpite dal terremoto una campagna diffusa di interventi di riparazione del danno e di miglioramento sismico. Di solito la riparazione del danno può assumere il significato di un intervento di miglioramento sismico in quanto l'edificio può essere portato a una condizione migliore di quella precedente l'evento. Al cospetto di un edificio gravemente danneggiato si è di solito in presenza di un contributo maggiore da parte dello Stato, gli edifici non sono occupati e gli interventi strutturali possono essere previsti nella prospettiva di un miglioramento sismico diffuso, mentre in presenza di un danno limitato e per la prevenzione dal rischio sismico gli interventi devono essere previsti limitando, per quanto possibile, l'allontanamento degli occupanti con interventi efficaci dal costo contenuto.

Il comportamento di un edificio in muratura nei confronti di un evento sismico va esaminato avendo ben presente le principali modalità di risposta alle azioni sismiche che si possono verificare, che sono state comprovate dall'osservazione dei danni riscontrati sul costruito in muratura e possono essere identificate secondo due modalità

di collasso, rispettivamente al di fuori del proprio piano e nel piano stesso. Per avere un quadro più completo è necessario considerare la modalità di danneggiamento che si manifesta per disgregazione della muratura, avendo presente che questo comportamento dipende dalla qualità e dalla tecnica costruttiva di accoppiamento dei materiali.

I LIVELLI DEL DANNO SISMICO

Per la valutazione del danno sismico si fa riferimento alla scala macrosismica europea EMS 98, esplicitata nel manuale della sche-

D1 – danno leggero: nessun danno strutturale e danno non strutturale trascurabile; fessure capillari a pochi pannelli murari; caduta di piccoli pezzi di solo intonaco, in rari casi caduta di parti superiori di edifici.

D2 – danno moderato non strutturale, lesioni alle murature, cadute di pezzi abbastanza grandi di intonaco; crolli parziali di canne fumarie.

D3 – danno medio con estese lesioni in più pannelli murari, lesioni ai cornicioni; crollo di elementi non strutturali.

D4 – danno grave alle strutture, crollo di porzione di muri, crollo parziale di cornicioni e solai.

D5 – danno gravissimo alle strutture, prossimo al crollo o crollo totale.

esplicitata nel manuale della sche- Figura 1.1. Livelli di danno EMS 98 (scala macrosismica europea EMS 98)

da AeDES per il rilievo dell'agibilità degli edifici a seguito di un evento sismico, a cura del Gruppo nazionale per la difesa dai terremoti e del Dipartimento di protezione civile. I livelli di danno della scala EMS 98 sono sei, compreso il danno nullo D0. Nel seguito si riporta la descrizione dei livelli di danno tratta dal manuale della scheda AeDES (Fig. 1.1).

D1 - danno leggero

È un danno che non cambia in modo significativo la resistenza della struttura e non pregiudica la sicurezza degli occupanti a causa di possibili cadute di elementi non strutturali; il danno è leggero anche se le cadute possono rapidamente essere scongiurate.

Lesioni di ampiezza ≤ 1 mm, comunque distribuite nelle murature e negli orizzontamenti senza espulsione di materiale, distacchi limitati o lievi dislocazioni (≤ 1 mm) fra porzioni di strutture, ad esempio fra muri e solai o fra muri e scale o fra muri ortogonali. Fuori piombo limitati e non associati a fenomeni di distacco in elevazione o a cedimenti fondali dovuti al sisma, che quindi possono essere ritenuti preesistenti e non influenti sulla capacità delle strutture. Dissesti limitati alle coperture più deformabili (legno o acciaio), con conseguente caduta di qualche tegola ai bordi. Cadute di piccoli pezzi di intonaco o di stucco non legati alla muratura e degradati.

D2-D3 - danno medio-grave

È un danno che potrebbe anche cambiare in modo significativo la resistenza della struttura, senza che però venga avvicinato palesemente il limite del crollo parziale di elementi strutturali principali. Possibili cadute di oggetti non strutturali.

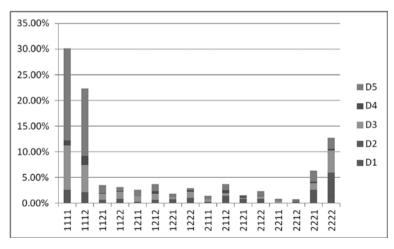
Lesioni di maggiore gravità rispetto al D1, anche con espulsioni di materiale e con ampiezza di qualche millimetro (fino a circa 1 cm) o più ampie in prossimità delle aperture, sintomi di lesioni da schiacciamento, distacchi significativi fra solai e/o scale e pareti e fra pareti ortogonali, qualche crollo parziale nell'orditura secondaria di solai. Lesioni nelle volte di qualche millimetro e/o con sintomi di schiacciamento. Nelle coperture in legno o in acciaio con manto di tegole, sconnessioni nell'orditura secondaria e spostamenti apprezzabili (fino a circa 1 cm) degli appoggi delle travi principali, sconnessioni nell'orditura secondaria e caduta di una porzione rilevante del manto di tegole. Fuori piombo visibili riconducibili al sisma ma comunque inferiori all'1% circa.

D4-D5 – danno gravissimo

È un danno che modifica in modo evidente la resistenza della struttura portandola vicino al limite del crollo parziale o totale di elementi strutturali principali. Stato descritto da danni superiori ai precedenti, incluso il collasso.

Il livello di danno D4, a differenza del danno D3, può aversi in presenza di una

attivazione elevata dei meccanismi di collasso che possono compromettere la stabilità dell'intero edificio. Il costo maggiore che ne consegue è da collegare all'esecuzione dei lavori per la previsione di accorgimenti tecnici per la sicurezza dei lavoratori a parità di intervento finale di miglioramento sismico previsto per un edificio con livello di danno D3.


CORRELAZIONE TRA IL DANNO E LA VULNERABILITÀ

Il rilievo e l'analisi del danno rilevato dopo gli eventi sismici hanno evidenziato e dimostrato lo stretto legame tra danno e vulnerabilità con correlazioni numeriche che hanno consentito di individuare gli indicatori di vulnerabilità, confermati dopo ogni evento, che favoriscono il danneggiamento e la correlazione a specifici meccanismi di collasso; questi ultimi costituiscono il punto di partenza per la scelta della strategia di intervento per gli interventi agli edifici in muratura nelle fasi dell'emergenza e della ricostruzione dopo un evento sismico e per la fase della prevenzione dai dissesti in generale.

Per gli edifici del centro storico dell'Aquila a seguito del sisma del 2009 è stata effettuata, nell'ambito del piano di ricostruzione, una analisi speditiva della vulnerabilità sismica confrontando il danno rilevato nella fase dell'emergenza con la presenza di quattro indicatori ritenuti significativi della risposta sismica degli edifici:

- 1. qualità della muratura;
- presenza di collegamenti di piano;
- 3. tipologia degli orizzontamenti;
- 4. tipologia della copertura.

Secondo questa analisi sono risultate prevalenti le tipologie costruttive (circa 51%) corrispondenti a edifici in muratura di qualità a tessitura irregolare e di cattiva qualità,

Livelli di danno: scala EMS 98. Ascisse: le combinazioni delle sequenze degli indicatori (1 = non efficace, 2 = efficace) riferiti alle tipologie costruttive con il seguente ordine: muratura, collegamenti di piano, orizzontamenti, copertura. Ordinate: percentuale del livello di danno secondo la scala EMS 98: D5 gravissimo, D4 grave, D3 medio, D2 moderato, D1 lieve, D0 nullo (A. Lemme)

Figura 1.2. Tipologia costruttiva - Sequenza indicatori: muratura, collegamenti di piano, orizzontamenti, copertura

assenza di collegamenti di piano, orizzontamenti deformabili e copertura spingente e non spingente che sono state maggiormente danneggiate con danno D3 (14%), D4 e D5 (17%), mentre gli edifici caratterizzati da muratura con tessitura regolare e di buona qualità, presenza di collegamenti di piano e copertura non spingente sono stati danneggiati in modo minore (Fig. 1.2 e Tab. 1.2).

Classe struttura	D1	D2	D3	D4	D5	Totale
1111	0,26%	2,37%	8,58%	1,06%	17,81%	30,08
1112	0,26%	1,85%	5,28%	1,85%	13,06%	22,30%
1121	0,26%	0,40%	1,19%	0,13%	1,58%	3,56%
1122	0,40%	0,53%	1,32%	0,13%	0,79%	3,17%
1211	0,00%	0,26%	1,06%	0,00%	1,32%	2,64%
1212	0,00%	0,66%	1,19%	0,53%	1,32%	3,69%
1221	0,13%	0,66%	0,40%	0,00%	0,66%	1,85%
1222	0,00%	1,06%	1,19%	0,26%	0,40%	2,90%
2111	0,00%	0,26%	0,53%	0,00%	0,66%	1,45%
2112	0,13%	1,32%	0,53%	0,53%	1,19%	3,69%
2121	0,40%	0,53%	0,13%	0,26%	0,26%	1,58%
2122	0,13%	0,79%	0,40%	0,13%	0,92%	2,37%
2211	0,00%	0,13%	0,26%	0,00%	0,53%	0,92%
2212	0,00%	0,26%	0,13%	0,13%	0,26%	0,79%
2221	0,26%	2,37%	1,32%	0,26%	2,11%	6,33%
2222	1,19%	4,75%	4,35%	0,26%	2,11%	12,66%
Totale	3,43%	18,21%	27,84%	5,54%	44,99%	100,00%

Tabella 1.2. Correlazione tipologia costruttiva e livello di danno

^{2222 =} muratura M2 – collegamenti di piano efficaci, catene – orizzontamenti deformabili o semi-deformabili collegati alle strutture – coperture leggere e non spingenti

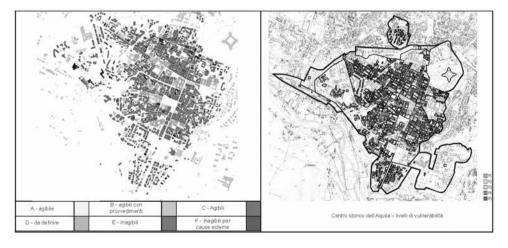


Figura 1.3. Centro storico di L'Aquila – esiti di agibilità e livelli di vulnerabilità (grafico a cura di C. Miozzi)

^{1111 =} muratura M1 – assenza di collegamenti di piano – orizzontamenti rigidi in c.a. o non collegati alle strutture e/o dimensionati in modo non adeguato – coperture pesanti e/o spingenti

Nella Figura 1.3 sono riportati gli esiti di agibilità rilevati dopo il sisma del 2009 e i livelli di vulnerabilità determinati con un confronto tra gli indicatori ricavati dalle schede di agibilità (AeDES) e la scheda di vulnerabilità GNDT-2V.

ANALISI DEL DANNO

Una prima distinzione da fare è quella tra danno quantitativo e qualitativo collegata ai modi di danneggiamento e ai meccanismi di collasso.

I modi di danno rappresentano la fenomenologia con la quale si manifesta il dissesto nella muratura per deformazione e fessurazione in relazione alle sue caratteristiche costruttive e proprietà meccaniche e sono evidenziati dalla gravità del quadro fessurativo.

I meccanismi di collasso rappresentano i cinematismi con i quali le diverse parti della fabbrica, separatesi a seguito del danno, giungono a collasso. Ciascun meccanismo di collasso può essere attivato con differenti modi di danno in base alla vulnerabilità dell'elemento strutturale (Fig. 1.4).

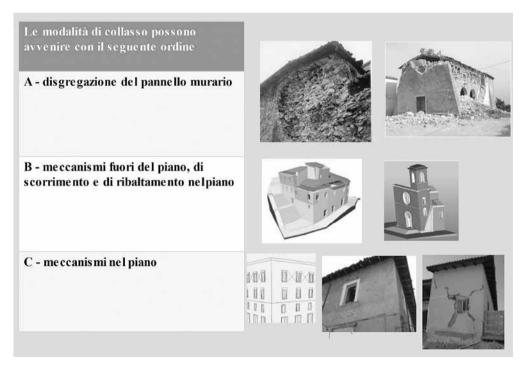
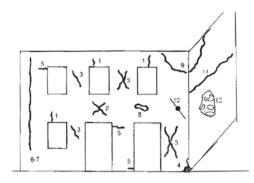



Figura 1.4. Gerarchia di attivazione dei meccanismi di collasso (foto e disegni A. Lemme, G. Russo)

Il danno quantitativo analizza l'ampiezza delle lesioni collegata alla fenomenologia e alla estensione della fessurazione nella costruzione (Fig. 1.5).

- Il. esioni ad andamento pressoché verticale sulle architravi di aperture (Fig. 4.2): lesioni ad andamento diagonale nelle fasce di piano (parapetti di finestre, architravi) (Fig. 4.11); lesioni ad andamento diagonale in elementi verticali (maschi murani) (Fig. 4.9): schiacciamento locale delle muranta con o serze espulsione di materiale (Fig. 4.9, 4.20): lesioni ad andamento pressoché orizzontale in testa el o al jude di maschi murani (Fig. 4.9): come 6 ma passanti (Fig. 4.10, 4.11, 4.12): espulsione di andamento pressoché pronderza delle interessi di orizzonta de materiale in corrisponderza delle interessione de cure di orizzonta delle interessione di cure di disconta in corrisponderza delle interessione fra due pareti ad angolo (Fig. 4.13):
- o sfilamento dell'ancoraggio; mento orizzontale in corrispondenza dei solai (Figg. 4.12, 4.15) o sottotetto
- (Fig. 4.7): 12: distacco di uno dei paramenti di un muro a doppio paramento (Fig. 4.14).

Figura 1.5. Manuale scheda AeDES – schema di riferimento per le lesioni alle murature

Il danno nelle strutture murarie si manifesta con fessurazioni e deformazioni della forma geometrica per carichi verticali, cedimenti in fondazione, variazioni termiche, azioni orizzontali e verticali dovute agli eventi sismici e spinte delle strutture (archi, volte, coperture). Le fessure si manifestano per effetto di tensioni che la struttura non è in grado di sopportare e sono classificate in base alla direzione, alla larghezza e alla profondità. Per quanto riguarda la direzione possono essere verticali, inclinate e orizzontali, isolate o diffuse, mentre in merito alla larghezza e alla profondità si possono distinguere in:

Fratture sottili

Distribuite sulla superficie, che si manifestano con piccoli spostamenti di punti originariamente contigui. Derivano da una dilatazione del volume del materiale in prossimità della superficie o da una dilatazione dello stesso volume al di sotto della superficie o da entrambe le cause. Talvolta sono capillari con ampiezza di micron o filature di ampiezza minore di 0,5 mm difficilmente percepibili a occhio nudo. Le fratture, pur non rappresentando un segno del dissesto, sono nocive per la durabilità del materiale, in particolar modo in ambienti aggressivi, e rappresentano un segno di degrado e una modifica della soluzione di continuità dei solidi murari; si manifestano secondo piani normali alle forze di trazione associate a una deformazione.

Lesioni

Possono essere lievi e isolate di piccola ampiezza (< 5 mm), significative in numero elevato e di ampiezza maggiore (> 2,5 mm) e gravi di ampiezza maggiore di 10 mm se verticali o di 5 mm se inclinate.

L'estensione e il quadro fessurativo in generale può avere carattere locale, se interessa un elemento strutturale e non si ripete per elementi analoghi, e globale se interessa il complesso degli elementi strutturali.

Le lesioni possono essere, inoltre, dirette quando coinvolgono gli elementi portanti e si manifestano generalmente con moti rigidi, deformazioni e fessurazioni, e indirette quando sono relative a elementi secondari (tamponature, tramezzi, cornicioni).

Analisi dei modi di danno

I modi di danno possono essere:

Compressione

Comporta un accorciamento del solido nella direzione dell'azione e una dilatazione nei piani paralleli ortogonali con superfici di rottura che possono essere prismatiche, iperboliche dirette e iperboliche inverse (Fig. 1.6).

Si ha la fessurazione prismatica per compressione quando l'elemento murario è caricato senza che siano impedite le deformazioni nei punti di applicazione del carico (ad esempio, una parete muraria caricata con l'interposizione di una materiale deformabile) e si manifesta con lesioni verticali che decompongono il solido in elementi prismatici.

Si ha la fessurazione iperbolica diretta per compressione quando, in elementi tozzi, è contenuta la deformazione a contatto con le superfici di carico (ad esempio, cordoli in cemento armato o maschi murari con larghezza più o meno pari all'altezza) e la deformazione si manifesta progressivamente dal punto di applicazione del carico con una superficie di rottura concava verso l'esterno proporzionale alla stessa deformazione.

Si ha la fessurazione iperbolica inversa per compressione, in elementi tozzi, quando a contatto con il carico si ha un materiale deformabile (ad esempio, giunti di malta degradata di elevate dimensioni rispetto alla dimensione del solido) e la deformazione è maggiore al contatto con il carico con superficie concava verso l'interno.

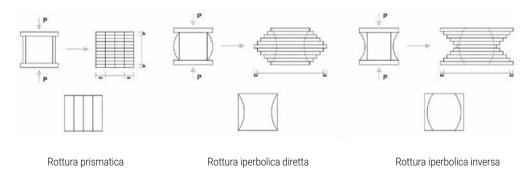


Figura 1.6. Schematizzazione della tipologia di rottura dei solidi prismatici

Esempi di rottura per compressione sono:

- lo schiacciamento con lesioni parallele sub-verticali, verticali o orizzontali per carichi localizzati nel piano medio;
- la disgregazione della malta e poi la rottura delle pietre e dopo lo schiacciamento;
- lo schiacciamento per il peso proprio della struttura con lesioni verticali.

Pressoflessione e carico di punta

Quando la risultante dei carichi verticali non passa per il piano medio della sezione muraria sarà soggetta a una compressione assiale e a una flessione. Le cause sono da imputare a difetti di costruzione o a carichi che interessano paramenti murari con rigidezza differente, inoltre si manifesta la rottura per carico di punta quando la lunghezza dell'elemento strutturale è superiore di molto alla dimensione trasversale minore (1/h > 15).

Le lesioni da pressoflessione possono ricondursi a tre casi:

• due paramenti di cui uno realizzato con materiale più resistente (Fig. 1.7);

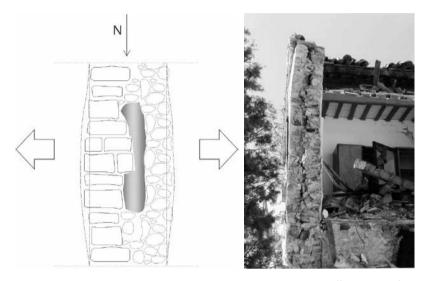


Figura 1.7. Due paramenti di cui uno realizzato con materiale più resistente (foto A. Lemme)

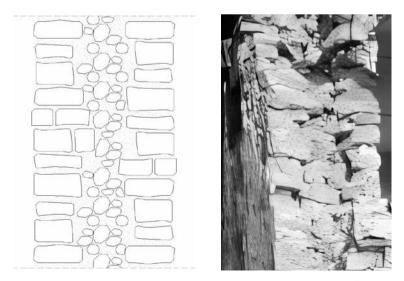


Figura 1.8. Entrambi i parametri di una sezione muraria più resistenti rispetto al nucleo centrale (foto A. Lemme)

- entrambi i paramenti di una sezione muraria più resistenti rispetto al nucleo centrale (Fig. 1.8);
- angolate delle pareti murarie realizzate con pietre di grandi dimensioni squadrate collegate alla restante muratura di scarsa qualità.

Le lesioni sono evidenziate dal rigonfiamento dei paramenti, sezionamento in più tronchi verticali, crollo del paramento di qualità peggiore.

Taglio

Un solido murario soggetto a forze tangenziali di uguale intensità applicate in modo uniforme sulle quattro facce e dirette verso due spigoli opposti si deforma passando da una configurazione con angoli retti a una rombica con allungamento di una diagonale e accorciamento dell'altra. Tale deformazione genera due tensioni principali dello stesso valore assoluto ma segno opposto che sollecitano a trazione e compressione l'elemento murario lungo le diagonali inclinate a 45° (Figg. 1.9 e 1.10).

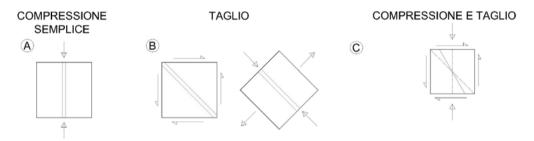


Figura 1.9. Schema della compressione e del taglio nei pannelli murari

Figura 1.10. Sisma Italia centrale 2016: lesioni da taglio nei maschi murari e nelle fasce di piano (foto A. Lemme)

Flessione

In un solido prismatico sollecitato a flessione, ad esempio un elemento rettilineo incastrato e sollecitato da un momento nel piano verticale, si ha una deformazione circolare della sezione con l'allungamento delle fibre superiori, sollecitate a trazione, che decresce verso l'asse neutro per invertirsi e diventare di compressione nel-